
Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Module 09: Programming in C++
Operator Overloading

Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

sourangshu@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in C++

by Prof. Partha Pratim Das

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 1



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Module Objectives

Understand the Operator Overloading

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 2



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Module Outline

Basic Differences between Operators & Functions

Operator Overloading

Examples of Operator Overloading

operator+ for String & Enum

Operator Overloading Rules

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 3



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Operator & Function

What is the difference between an operator & a function?

unsigned int Multiply(unsigned x, unsigned y) {

int prod = 0;

while (y-- > 0) prod += x;

return prod;

}

int main() {

unsigned int a = 2, b = 3;

// Computed by ’*’ operator

unsigned int c = a * b; // c is 6

// Computed by Multiply function

unsigned int d = Multiply(a, b); // d is 6

return 0;

}

Same computation by an operator and a function

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 4



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Difference between Operator & Functions

Operator Function

• Usually written in infix nota-
tion

• Always written in prefix no-
tation

• Examples: • Examples:
Infix: a + b; a ? b : c;

Prefix: ++a;

Postfix: a++;

Prefix: max(a, b);

qsort(int[], int, int,

void (*)(void*, void*));

• Operates on one or more
operands, typically up to 3
(Unary, Binary or Ternary)

• Operates on zero or more ar-
guments

• Produces one result • Produces up to one result
• Order of operations is de-
cided by precedence and asso-
ciativity

• Order of application is de-
cided by depth of nesting

• Operators are pre-defined • Functions can be defined as
needed

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 5



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Operator Functions in C++

Introduces a new keyword: operator

Every operator is associated with an operator function that
defines its behavior

Operator Expression Operator Function

a + b operator+(a, b)

a = b operator=(a, b)

c = a + b operator=(c, operator+(a, b))

Operator functions are implicit for predefined operators of
built-in types and cannot be redefined

An operator function may have a signature as:

MyType a, b; // An enum or struct

MyType operator+(MyType, MyType); // Operator function

a + b // Calls operator+(a, b)

C++ allows users to define an operator function and overload it

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 6



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Program 09.01: String Concatenation

Concatenation by string functions Concatenation operator

#include <iostream>

#include <cstring>

using namespace std;

typedef struct _String { char *str;

} String;

int main(){

String fName, lName, name;

fName.str = strdup("Partha ");

lName.str = strdup("Das" );

name.str = (char *) malloc(

strlen(fName.str) +

strlen(lName.str) + 1);

strcpy(name.str, fName.str);

strcat(name.str, lName.str);

cout << "First Name: " <<

fName.str << endl;

cout << "Last Name: " <<

lName.str << endl;

cout << "Full Name: " <<

name.str << endl;

return 0;

}

----------

First Name: Partha

Last Name: Das

Full Name: Partha Das

#include <iostream>

#include <cstring>

using namespace std;

typedef struct _String { char *str; } String;

String operator+(const String& s1, const String& s2) {

String s;

s.str = (char *) malloc(strlen(s1.str) +

strlen(s2.str) + 1);

strcpy(s.str, s1.str);

strcat(s.str, s2.str);

return s;

}

int main() {

String fName, lName, name;

fName.str = strdup("Partha ");

lName.str = strdup("Das");

name = fName + lName; // Overload operator +

cout << "First Name: " << fName.str << endl;

cout << "Last Name: " << lName.str << endl;

cout << "Full Name: " << name.str << endl;

return 0;

}

----------

First Name: Partha

Last Name: Das

Full Name: Partha Das

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 7



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Program 09.02: A new semantics for operator+

w/o Overloading + Overloading operator +

#include <iostream>

using namespace std;

enum E {C0 = 0, C1 = 1, C2 = 2};

int main() {

E a = C1, b = C2;

int x = -1;

x = a + b;

cout << x << endl;

return 0;

}

----------

3

#include <iostream>

using namespace std;

enum E {C0 = 0, C1 = 1, C2 = 2};

E operator+(const E& a, const E& b) {

unsigned int uia = a, uib = b;

unsigned int t = (uia + uib) % 3;

return (E) t;

}

int main() {

E a = C1, b = C2;

int x = -1;

x = a + b;

cout << x << endl;

return 0;

}

----------

0

• Implicitly converts enum E values to int

• Adds by operator+ of int • operator + is overloaded for enum E

• Result is outside enum E range • Result is a valid enum E value

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 8



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Operator Overloading – Summary of Rules

No new operator such as **, <>, or &| can be defined for overloading

Intrinsic properties of the overloaded operator cannot be change

Preserves arity
Preserves precedence

Preserves associativity

These operators can be overloaded:

[] + - * / % ^ & | ~ ! = += -= *= /= %= ^= &= |=

<< >> >>= <<= == != < > <= >= && || ++ -- , ->* -> ( ) [ ]

For unary prefix operators, use: MyType& operator++(MyType& s1)

For unary postfix operators, use: MyType operator++(MyType& s1, int)

The operators :: (scope resolution), . (member access), .* (member access
through pointer to member), sizeof, and ?: (ternary conditional) cannot
be overloaded

The overloads of operators &&, ||, and , (comma) lose their special
properties: short-circuit evaluation and sequencing

The overload of operator-> must either return a raw pointer or return an
object (by reference or by value), for which operator-> is in turn overloaded

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 9



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Overloading disallowed for

Operator Reason

• dot (.) • The second argument is a name (of the field or
member function), rather than a value

• Scope Resolution ( :: ) • It performs a (compile time) scope resolution rather
than an expression evaluation.

• Ternary (? :) • overloading expr1 ? expr2 : expr3 would not be
able to guarantee that only one of expr2 and expr3
was executed

• sizeof • Sizeof cannot be overloaded because built-in oper-
ations, such as incrementing a pointer into an array
implicitly depends on it

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 10



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Do not overload these operators

Operator Reason

• && and | | • In evaluation, the second operand is not evaluated
if the result can be deduced solely by evaluating the
first operand. However, this evaluation is not possi-
ble for overloaded versions of these operators

• Comma ( , ) • This operator guarantees that the first operand is
evaluated before the second operand. However, if
the comma operator is overloaded, its operand eval-
uation depends on C++’s function parameter mech-
anism, which does not guarantee the order of evalu-
ation

• Ampersand (&) • The address of an object of incomplete type can
be taken, but if the complete type of that object is
a class type that declares operator &() as a member
function, then the behavior is undefined

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 11



Module 09

Sourangshu
Bhattacharya

Objectives &
Outline

Operators &
Functions

Operator
Overloading

Examples

String

Enum

Operator
Overloading
Rules

Summary

Module Summary

Introduced operator overloading

Explained the rules of operator overloading

NPTEL MOOCs Programming in C++ Sourangshu Bhattacharya 12


	Module Objective & Outline
	Difference: Operator & Operator function
	Operator Overloading
	Examples of Operator Overloading
	String
	Changing The semantic of +

	Rules
	Summary of module-09

